Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Teoría
  3. Overcoming symmetry limits in photovoltaics through surface engineering

Overcoming symmetry limits in photovoltaics through surface engineering

22/12/2025

A recent study published in Physical Review Letters and carried out by researchers from EHU, the Materials Physics Center, nanoGUNE, and DIPC introduces a groundbreaking approach to solar energy conversion and spintronics. The work tackles a long-standing limitation in the bulk photovoltaic effect—the need for non-centrosymmetric crystals—by demonstrating that even perfectly symmetric materials can generate significant photocurrents through engineered surface electronic states. This discovery opens new pathways for designing efficient light-to-electricity conversion systems and ultrafast spintronic devices.

half
Schematic representation of the paper "Surface-State Engineering for Generation of Nonlinear Charge and Spin Photocurrents"

Conventional solar cells rely on carefully engineered interfaces, such as p–n junctions, to turn light into electricity. A more exotic mechanism—the bulk photovoltaic effect—can generate electrical current directly in a material without such junctions, but only if its crystal structure lacks inversion symmetry. This strict requirement has long restricted the search for practical materials. In this new study, a group of researchers demonstrates that this limitation can be overcome: even perfectly symmetric materials can produce sizeable photocurrents thanks to the special electronic states that naturally form at their surfaces.

Using first-principles calculations, we show that the surfaces of metals and semiconductors with strong relativistic spin–orbit interaction can host electronic states that behave very differently from those in the bulk. These surface states break inversion symmetry locally and respond nonlinearly to light, giving rise to robust charge currents and, remarkably, pure spin-polarized currents flowing along the surface. After benchmarking the mechanism on the well-known Au(111) surface, we identified Tl/Si(111) as an ideal material platform, predicting photocurrents comparable to those of leading ferroelectrics along with clear experimental signatures for detection.

The findings reveal a new strategy for light-to-electricity conversion: rather than searching for complex non-centrosymmetric crystals, scientists can “engineer” photocurrents by tailoring the surface electronic structure of otherwise symmetric materials. Beyond energy harvesting, the ability to generate and control spin currents with light—without magnets or applied voltages—opens promising opportunities for ultrafast, low-power spintronic devices.

For further information:

J. Sivianes, P. Garcia-Goiricelaya, D. Hernangómez-Pérez, and J. Ibañez-Azpiroz

Surface-State Engineering for Generation of Nonlinear Charge and Spin Photocurrents

Phys. Rev. Lett. 135, 256201 (2025)

 

Tags
Spintronics
Photovoltaics
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 18/12/2025

    Researchers Observe Flat-Band Ultrastrong Coupling

  • 09/12/2025

    Fernando González Zalba recibe la competitiva ayuda ERC Consolidator Grant

  • 28/11/2025

    Rapid fabrication of self-propelled, steerable magnetic microcatheters for precision medicine

  • 27/11/2025

    El EIT Jumpstarter premia el proyecto empresarial Prospect Biotech de CIC nanoGUNE

  • 21/11/2025

    NanoGUNE acoge el Hamaiketako de Gerentes con foco en tecnologías cuánticas

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC